什么是有理数
什么是有理数?请问什么是有理数?有理数概念是什么?有理数的概念是什么。有理数的定义是什么?什么叫有理数?什么叫做有理数?为什么叫做有理数呢?0也是有理数。有理数集是元素为全体有理数的集合,而有理数则为有理数集中的所有元素。有理数集是元素为全体有理数的集合,而有理数则为有理数集中的所有元素。
1、什么叫做有理数?有理数是整数和分数的统称0也是。有理数的概念是什么。有理数是整数和分数的统称,一切有理数都可以化成分数的形式。有理数可分为整数和分数也可分为三种,一;正有理数,二;0,三;负有理数。除了无限不循环小数以外的实数统称有理数。英文:rationalnumber读音:yǒulǐshù整数和分数统称为有理数,任何一个有理数都可以写成分数m/n(m,n都是整数,且n≠0)的形式。
其中包括整数和通常所说的分数,此分数亦可表示为有限小数或无限循环小数。这一定义在数的十进制和其他进位制(如二进制)下都适用。数学上,有理数是一个整数a和一个非零整数b的比(ratio),通常写作a/b,故又称作分数。希腊文称为λογο,原意为“成比例的数”(rationalnumber),但中文翻译不恰当,逐渐变成“有道理的数”。
2、什么叫有理数?有理数是整数(正整数、0、负整数)和分数的统称,是整数和分数的集合。一切可以化成两个整数相除的数都是有理数。有理数是整数(正整数、0、负整数)和分数的统称,是整数和分数的集合。整数也可看做是分母为一的分数。不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。是“数与代数”领域中的重要内容之一,在现实生活中有广泛的应用,是继续学习实数、代数式、方程、不等式、直角坐标系、函数、统计等数学内容以及相关学科知识的基础。
但Q并不表示有理数,有理数集与有理数是两个不同的概念。有理数集是元素为全体有理数的集合,而有理数则为有理数集中的所有元素。理数的乘法运算:1、同号得正,异号得负,并把绝对值相乘。2、任何数与零相乘,都得零。3、几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负,当负因数有偶数个时,积为正。4、几个数相乘,有一个因数为零,积就为零。
3、有理数的定义是什么?数学上,有理数是一个整数a和一个非零整数b的比,例如3/8,通则为a/b,故又称作分数。0也是有理数。有理数是整数和分数的集合,整数也可看做是分母为一的分数。\x0d\x0a有理数的小数部分是有限或为无限循环的数。不是有理数的实数遂称为无理数,即无理数的小数部分是无限不循环的数。\x0d\x0a有理数集可用大写黑正体符号Q代表。
4、请问什么是有理数?为什么叫做有理数呢?整数和分数统称为有理数。整数(integer)就是像3,10等这样的数。整数的全体构成整数集,整数集是一个数环。在整数系中,零和正整数统称为自然数。1、2、3、…、n、…(n为非零自然数)为负整数。则正整数、零与负整数构成整数系。整数不包括小数、分数。分数表示一个数是另一个数的几分之几,或一个事件与所有事件的比例。把单位“1”平均分成若干份,表示这样的一份或几份的数叫分数。
有理数是整数和分数的集合,整数也可看做是分母为一的分数。有理数的小数部分是有限或为无限循环的数。不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。有理数集可以用大写黑正体符号Q代表。但Q并不表示有理数,有理数集与有理数是两个不同的概念。有理数集是元素为全体有理数的集合,而有理数则为有理数集中的所有元素。扩展资料有理数名词的来源:事实上,这是一个翻译上的失误。
5、什么是有理数?整数和分数通称有理数。分数也可以表示成有限小数或无限循环小数。有限小数和整数都可以写成无限循环小数的形式,所以可以说,有理数就是无限循环小数。其中包含有后面的小数位全是0的。根据数学书本定义:整数和分数统称为有理数。①有理数主要是和无理数对应的,无理数是无限不循环小数,比如:5.......,有很多根式也是无理数,比如√2、√3、√17......,但不是所有的根式都是无理数,比如√4、√81......②有理数一定是有限的,或者是无限循环的,注意:循环两个字。
6、有理数概念是什么?有理数为整数(正整数、0、负整数)和分数的统称。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。由于任何一个整数或分数都可以化为十进制循环小数,反之,每一个十进制循环小数也能化为整数或分数,因此,有理数也可以定义为十进制循环小数。扩展资料:有理数的基本运算法则:(1)加法运算1、同号两数相加,取与加数相同的符号,并把绝对值相加。
3、互为相反数的两数相加得0。4、一个数同0相加仍得这个数。5、互为相反数的两个数,可以先相加。6、符号相同的数可以先相加。7、分母相同的数可以先相加。8、几个数相加能得整数的可以先相加。(2)减法运算减去一个数,等于加上这个数的相反数,即把有理数的减法利用数的相反数变成加法进行运算。(3)乘法运算1、同号得正,异号得负,并把绝对值相乘。
