哥德巴赫猜想是什么弱智力猜想

旅游攻略 2024-04-10 0

哥德巴赫猜想?什么是哥德巴赫猜想?哥德巴赫的猜想是什么?后者称为“弱哥德巴赫猜想”或“关于奇数的哥德巴赫猜想”。这个问题是德国数学家哥德巴赫于1742年6月7日在给大数学家欧拉的信中提出的,所以被称作哥德巴赫猜想。哥德巴赫的猜想是近代三大数学难题之一,也就是哥德巴赫1742年给欧拉的信中提出猜想。

1、哥德巴赫猜想到底有什么现实意义

首先说一下,“哥德巴赫猜想”是世界近代三大数学难题之一,类似于中学所作的数学难题一样,他就是一道题,只是这道题,难住了所有人而已。华罗庚是中国解析数论、矩阵几何学、典型群、自守函数论等多方面研究的创始人和开拓者,虽然只有初中学历,但是他是一名数论专家,华罗庚最大的成就来自解析数论。“哥德巴赫猜想”非常简单,一句话就可以搞定,任何一个大于2的整数,都可以写成三个质数之和。

正是因为欧拉究其一生都无法证明这个猜想,所以他就变成了“世界级难题”,也因此被世人熟知。“哥德巴赫猜想”的研究者很多,如挪威的布朗,英国的埃斯特曼,苏联的布赫夕太勃。华罗庚是中国最早从事“哥德巴赫猜想”的人,他的学生王元、潘承洞、陈景润等人,都对“哥德巴赫猜想”做出了贡献,只是陈景润贡献最大,并将他的发现称为“陈氏定理”。

2、哥德巴赫的猜想是什么?

哥德巴赫的猜想是近代三大数学难题之一,也就是哥德巴赫1742年给欧拉的信中提出猜想。哥德巴赫的猜想为任一大于2的偶数都可写成两个质数之和。但是哥德巴赫知道自己无法证明它,于是就写信请教赫赫有名的大数学家欧拉帮忙证明,但是一直到死,欧拉也无法证明。因现今数学界已经不使用“1也是素数”这个约定,原初猜想的现代陈述为:任一大于5的整数都可写成三个质数之和。

从关于偶数的哥德巴赫猜想可推出:任何一个大于7的奇数都能被表示成三个奇质数的和。后者称为“弱哥德巴赫猜想”或“关于奇数的哥德巴赫猜想”。若关于偶数的哥德巴赫猜想是对的,则关于奇数的哥德巴赫猜想也会是对的。2013年5月,巴黎高等师范学院研究员哈洛德·贺欧夫各特发表了两篇论文,宣布彻底证明了弱哥德巴赫猜想。

3、什么是哥德巴赫猜想?

哥德巴赫1742年在给欧拉的信中提出了以下猜想:任一大于2的整数都可写成三个质数之和[1]。但是哥德巴赫自己无法证明它,于是就写信请教赫赫有名的大数学家欧拉帮忙证明,但是一直到死,欧拉也无法证明。[2]因现今数学界已经不使用“1也是素数”这个约定,原初猜想的现代陈述为:任一大于5的整数都可写成三个质数之和。哥德巴赫猜想并没有被证明,证明的最佳结果是陈景润提出的。

4、哥德巴赫是哪国人

哥德巴赫(GoldbachC.,1690.3.181764.11.20)是德国数学家;出生于格奥尼格斯别尔格(现名加里宁城);曾在英国牛津大学学习;原学法学,由于在欧洲各国访问期间结识了贝努利家族,所以对数学研究产生了兴趣;曾担任中学教师。1725年到俄国,同年被选为彼得堡科学院院士;1725年~1740年担任彼得堡科学院会议秘书;1742年移居莫斯科,并在俄国外交部任职。

在1742年6月7日给欧拉的信中,哥德巴赫提出了一个命题。他写道:我的问题是这样的:随便取某一个奇数,比如77,可以把它写成三个素数之和:7753+17+7;再任取一个奇数,比如461,461449+7+5,也是三个素数之和,461还可以写成257+199+5,仍然是三个素数之和。这样,我发现:任何大于5的奇数都是三个素数之和。

5、哥德巴赫猜想?

这个问题是德国数学家哥德巴赫于1742年6月7日在给大数学家欧拉的信中提出的,所以被称作哥德巴赫猜想。今日常见的猜想陈述为欧拉的版本,即任一大于2的偶数都可写成两个素数之和,亦称为“强哥德巴赫猜想”或“关于偶数的哥德巴赫猜想”。据此,把命题任一充分大的偶数都可以表示成为一个素因子个数不超过a个的数与另一个素因子不超过b个的数之和记作a+b。

嗯干嘛?在1742年给欧拉的信中哥德巴赫提出了以下猜想:任一大于2的整数都可写成三个质数之和。因现今数学界已经不使用“1也是素数”这个约定,原初猜想的现代陈述为:任一大于5的整数都可写成三个质数之和。欧拉在回信中也提出另一等价版本,即任一大于2的偶数都可写成两个质数之和。今日常见的猜想陈述为欧拉的版本。把命题任一充分大的偶数都可以表示成为一个素因子个数不超过a个的数与另一个素因子不超过b个的数之和记作a+b。

6、哥德巴赫猜想

在1742年给欧拉的信中哥德巴赫提出了以下猜想:任一大于2的整数都可写成三个质数之和。因现今数学界已经不使用“1也是素数”这个约定,原初猜想的现代陈述为:任一大于5的整数都可写成三个质数之和。欧拉在回信中也提出另一等价版本,即任一大于2的偶数都可写成两个质数之和。今日常见的猜想陈述为欧拉的版本。把命题任一充分大的偶数都可以表示成为一个素因子个数不超过a个的数与另一个素因子不超过b个的数之和记作a+b。

这个问题是德国数学家哥德巴赫(C.Goldbach,16901764)于1742年6月7日在给大数学家欧拉的信中提出的,所以被称作哥德巴赫猜想(GoldbachConjecture)。今日常见的猜想陈述为欧拉的版本,即任一大于2的偶数都可写成两个素数之和,亦称为“强哥德巴赫猜想”或“关于偶数的哥德巴赫猜想”。从关于偶数的哥德巴赫猜想,可推出:任一大于7的奇数都可写成三个质数之和的猜想。